Top 20 R Libraries for Data Science in 2018 [Infographic]


Top 20 R Libraries for Data Science in 2018 [Infographic]

In our previous articles, we have already discussed top libraries for Data Science in Python and Scala. But this list of articles will not be complete without R. All of these programming languages are popular for different data science tasks and projects and have their supporters and opponents. So while we are arranging a comparison of how these programming languages relate to each other, we have prepared some of the most useful R libraries for data scientists and engineers, based on our experience.

R is a well-known and increasingly popular tool in the Data Science field. It is a programming language and a software environment primarily designed for statistical computing, so its interface and structure are very well suited for the scientific tasks. Moreover, R has one of the most developed libraries systems that counts thousands of packages to solve a wide variety of problems.

Improve your skills with Data Science School

Although there are many general-purpose packages, we want to focus on those that provide sufficient capabilities for data manipulation, visualization, competitive research, and machine learning. Therefore, we have prepared an infographic of Top 20 R packages for data science, which covers the libraries main features and GitHub activities, as all of the libraries are open-source.

INFOGRAPHIC

Top 20 R Libraries

Of course, this list of libraries is far from complete, but here we have collected the most generic and time-tested tools in our opinion. There are many other specific libraries that might be more efficient while solving particular tasks, so do not hesitate and share your thoughts and experience in the comment section.

Thank you for your attention!

Virtual Machines for data science

Comments (1)

Add a new comment:

Related services

Data Engineering

Data Engineering

Big data engineering services, data cleaning, transformation, storage. API design and development

Data Science Applications

Data Science Applications

Building end-to-end data pipelines, machine learning application, AI consulting

Machine learning solutions

Machine learning solutions

We apply machine learning algorithms and models to solve business challenges from prototyping phase to integration of models into production systems.