ActiveWizards

Machine Learning driven prescriptive analytics

Project Description

Development of an application that tracks interactions between farming equipment in real-time, activities of farming equipment on locations and fields.

Challenges

- Monitoring and changing the task statuses in databases for started and completed tasks by equipment location geo-fence data;
- Identification and processing of the performing equipment;
- Idling / Operating / Driving time calculation;
- ETA for task completion calculation;
- Identification of a position for equipment engagement/ disengagement based on GPS data;
- Processing and storing real-time data to an external database for live monitoring on user's mobile device.

CUSTOMER

NDA

INDUSTRY

Agriculture

TYPE

Data science iOS

TECHNOLOGY

Postgres

Postgis

Scala

Apache Spark

Apache Kafka

Nifi

MAGIC Java

Scala Libraries

Solutions

Monitoring

To monitor which part of the field the device has processed, the field was divided into a multipolygon. The tractor was regarded also as a polygon, after which the polygon of the tractor was subtracted from the field, and a new shape of the field was calculated.

• Real-time data collection

We used Spark streaming to implement real-time data collection from the equipment and devices using GPS.

Testing

To test the algorithm, we have been generating multi-polygons routes with coordinates and sent this data to the server.

Summary

The application tracks interactions between farming equipment in real-time, activities of farming equipment on locations and fields was successfully developed.

Among the capabilities of the present version:

- Tracking the equipment interaction;
- Tracking the equipment entering / leaving locations/fields;
- Calculation of activities / cycles / tasks.